

Hemispheric and seasonal variations in the cold plasma outflow source region: polar cap ionosphere electron density at 350–500 km

S. M. Hatch, S. Haaland, K. M. Laundal, T. M. Jørgensen, A. W. Yau, L. M. Bjoland, J. P. Reistad, A. Ohma, K. Oksavik

KEY POINTS

- We use ~15 years of Swarm/CHAMP polar cap plasma density N_e, adjusted for altitude and solar activity variations (Appendix A in <u>pre-print, doi:10.1002/essoar.10502854.1</u>)
- 1. Polar cap N_e is anti-symmetric with respect to IMF By in each hemisphere
- 2. Polar cap N_e decreases with decreasing *Dst* index
- 3. Increased solar wind driving «destructively interferes» with overall seasonal polar cap N_e trends at June and December solstices

1. POLAR CAP N_e VARIATIONS WITH IMF By

WHAT THIS FIGURE SHOWS

- Red and blue lines indicate median N_e* in each hemisphere as a function of IMF By
- In Northern Hemisphere: N_e* tends to increase with increasing IMF By
- In Southern Hemisphere: N_e^* tends to decrease with increasing IMF By

Definitions

Polar cap: $|MLat| \ge 80^{\circ}$

- MLat: Magnetic latitude, Apex coordinates
- N_e* : Solar activity- and altitudeadjusted polar cap plasma density (see key points)

2. POLAR CAP N_e VARIATIONS WITH Dst INDEX

WHAT THIS FIGURE SHOWS

- Red and blue lines indicate median N_e^* in each hemisphere as function of *Dst* index
- In both hemispheres: N_e^* tends to decrease with decreasing *Dst* index
- In other words, N_e* tends to decrease with increasing geomagnetic activity
- \rightarrow What is the cause of this?

Definitions Polar cap: |MLat| ≥ 80° MLat: Magnetic latitude, Apex coordinates

N_e* : Solar activity- and altitude-adjusted polar cap plasma density (see key points)

BIRKELAND CENTRE
 FOR SPACE SCIENCE

3. POLAR CAP N_e VARIATIONS WITH SOLAR WIND DRIVING

WHAT THESE HISTOGRAMS SHOW

- NH statistics in LH column, SH in RH column
- Stats around Dec solstice are in top row
- Stats around Jun solstice are in bottom row
- x axis shows log₁₀ Ne*
- **During** LOCAL WINTER: N_e^* distribution shifted to overall HIGHER values for "High" solar wind driving relative to distribution under "Low" solar wind driving
- During <u>LOCAL SUMMER</u>:

 N_e^* distribution shifted to overall **LOWER** values for "High" solar wind driving relative to "Low" solar wind driving

 QUESTION: Why is high solar wind driving associated with a shift to lower densities during local summer, and a shift to higher densities during local winter?

```
Definitions
High: d\Phi/dt > 4421(km/s)^{4/3}(nT)^{2/3}
Low : d\Phi/dt < 4421(km/s)^{4/3}(nT)^{2/3}
CLES: «Common language effect size» statistic
```

